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Abstract: This research studies a general modeling to evaluate 

different scenarios of travel patterns and their impact on the daily 

cost negotiated in the Real Time and Day-Ahead market, using the 

GAMS methodology in a MILP model, evaluating also a 

characterization of the PQP market (price quantity probability). 

The purpose of this characterization is to determine the behavior 

of the electric energy market, considering also the deterioration of 

batteries and the negotiations of it in real time in situations of 

shortage and overload, optimizing in this way the effects of the 

analysis of the cost of the application of the battery on the 

different travel patterns, consequently triggering the emergence of 

the development of the local electric transport aggregator 

industry. 

 
Keywords: Day Ahead market, electric vehicle aggregator, 

energy price, Real Time market, state of charge, travel patterns. 

I. INTRODUCTION 

An analysis of the literature [1]–[7] shows that 

converting the typical transport fleet to electric is an 

important energy policy among governments since electric 

vehicles (EVs) are a convenient alternative for improving 

environmental concerns and reducing carbon emissions. 

Nevertheless, the introduction of plug-in hybrid electric 

vehicles (PHEVs) would present some challenges in the 

distribution network (DR), which should be resolved before 

an EV is adopted; for this, the adoption of an intelligent 

charge/discharge management system (SCDMS) is a measure 

that will help to improve the system performance. 

Different studies [1]–[4] have described that SCDMS 

could be evaluated in both centralized and decentralized 

approaches, where Electric Vehicle Aggregators (EVAs) 

should take a relevant role in activating a decentralized 

SCDMS, so their bidding system should be optimized for 

each country's electricity market. For this purpose, the 

investigations [8]–[12] consider the bidding strategies of 

real-time and day-to-day market EVAs and the operation of 

SCDMS, to solve these problems the research model can be 

considered as an LP model so that it can be solved using 

GAMS and the CPLEX solver [13]. 
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Studies shown in [8]–[12] were based on different sources 

of travel information, batteries and market price data. 

Therefore, in order to compare and unify the research, an 

analysis of multiple vehicle fleet patterns was carried out, 

considering the analysis of travel patterns as distributed 

probability of departure and arrival time [14], which will be 

considered with trip time and average speed scenarios. 

The purpose of this research is to contrast the different 

stochastic and robust EVA scenarios in terms of fleet patterns 

of electric vehicles and optimization of tenders, in order to 

choose those that best suit the pricing systems of both 

national markets and traffic patterns of locations [15]. 

In the section II of the present study, a review of the 

methodology will be presented, focused on the limitation of 

modelling and on the different objective functions that are 

taken into account in the research to model the bidding and 

operating approaches of EVAs. In section III, a wide 

description of the case study will be presented. Therefore, 

section IV will show the results obtained in the case study on 

the different scenarios of vehicle fleet patterns; and finally, 

section V will provide conclusions on which one has the best 

national development benefits. 

II. METHODOLOGY 

A. Optimization Model 

EVAs modeling is principally based on cost optimization, 

continuous restrictions related to energy charge and 

discharge, battery charge status, and price quantity 

probability diagram analysis [10][11]. 

B. Objective Function: Costs 

The objective function in the modelling of EVAs is 

strongly related to the performance of the electricity market, 

mainly in price and uncertainty analysis. Therefore, to model 

the day-ahead market (DA) it is necessary to consider a 

probability of shortage or overproduction in the availability 

of energy proposed to the DA market and, finally, a cost 

related to the compensation to EVs owner compensation for 

time-life battery reduction. Thus, the following equations are 

established. 

 

min 𝐶 = 𝐷𝐴𝐸𝑀 −𝑅𝑇𝐸𝑀↓ (1) 

 +𝑅𝑇𝐸𝑀↑ + 𝐵𝐴𝑇𝐶𝑂𝑆𝑇  (2) 

 𝐷𝐴𝐸𝑀 = ∆𝑡  𝜆𝑡 ×  𝑃𝑡
𝐸𝑀 𝑇

𝑡   (3) 

 

 

Electric Vehicles Aggregator Participation in 

Energy Markets Considering Uncertainty Travel 

Patterns 

C. Villanueva, J. Luyo, Alexi Delgado, Ch. Carbajal 

mailto:ccarbajal@uch.edu.pe


 

Electric Vehicles Aggregator Participation in Energy Markets Considering Uncertainty Travel Patterns 

4995 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: L37471081219/2019©BEIESP 

DOI:10.35940/ijitee.L3747.1081219 

 𝑅𝑇𝐸𝑀↑ = ∆𝑡   𝜋𝑡 ,𝑠 × 𝜆𝑡 ,𝑠
↑ ×  𝑃𝑡 ,𝑠

−  𝑆
𝑠

𝑇
𝑡   (4) 

 𝑅𝑇𝐸𝑀↓ = ∆𝑡   𝜋𝑡 ,𝑠 × 𝜆𝑡 ,𝑠
↓ ×  𝑃𝑡 ,𝑠

+  𝑆
𝑠

𝑇
𝑡   (5) 

 𝐵𝐴𝑇𝐶𝑂𝑆𝑇 = 𝐵𝐶𝐸𝑆 ×    
𝑚𝑣

100

𝑆
𝑠

𝑉
𝑣 ×

𝑠𝑜𝑐𝑡 ,𝑣,𝑠
𝑑𝑒𝑔

𝐵𝐶𝑣
𝐸𝑆 × 𝐶𝑣

𝐸𝑆𝑇
𝑡 (6) 

Where: 

 𝐶  represent the total cost related with market 

participation of EVAs. 

 𝑡 is a set of time intervals ∆𝑡 and  𝑇 correspond to 

the period. 

 𝑠  and 𝑣  with 𝑆  and 𝑉  correspond to sets of 

scenarios of shortage and vehicles with their 

respective universe of sets. 

 𝜆𝑡, 𝜆𝑡,𝑠
↓  and 𝜆𝑡,𝑠

↑  represent the DA and RT market 

prices corresponding to  𝑡  time and  𝑠  shortage 

scenario. 

 𝑃𝑡
𝐸𝑀, 𝑃𝑡,𝑠

+  and 𝑃𝑡,𝑠
−  represent DA, RT overage and 

shortage power market traded respectively. 

 𝜋𝑡,𝑠  represent the shortage and overage 

probability. 

 Additional terms of battery degradation: 

 𝑚𝑣  represent a linear approximation of the 

battery life. 

 𝐶𝑣
𝐸𝑆  represent the Price of energy storage (ES) 

(typically in $/kWh). 

 𝐵𝐶𝐸𝑆 represent the capacity of ES. 

 𝑠𝑜𝑐𝑡,𝑣,𝑠

𝑑𝑒𝑔
 represent the degradation equivalent to 

state of charge for each vehicle in 𝑡 time and 𝑠 

shortage scenario. 

C. Constraints: Power Balances 

Constraints are related with power balances and power 

traded in both DA and real time market (RT) and are 

described in previous researches [11], [12] as follows: 

 

 0 ≤ 𝑃𝑡 ,𝑠
+ ≤  𝑃𝑡 ,𝑣 ,𝑠

𝐵2𝐺 × 𝜂𝑑𝑠𝑔𝑉
𝑣   (7) 

 0 ≤ 𝑃𝑡 ,𝑠
− ≤  𝑃𝑡 ,𝑣 ,𝑠

𝐵2𝐺 × 𝜂𝑑𝑠𝑔𝑉
𝑣   (8) 

 𝑃𝑡
𝐸𝑀 =   𝑃𝑡 ,𝑣,𝑠

𝐺2𝐵 − 𝑃𝑡 ,𝑣 ,𝑠
𝐵2𝐺 . 𝜂𝑑𝑠𝑔  𝑉

𝑣 + 𝑃𝑡 ,𝑠
+   (9) 

 𝑃𝑡
𝐸𝑀 =  (𝑃𝑡 ,𝑣,𝑠

𝐺2𝐵 − 𝑃𝑡 ,𝑣,𝑠
𝐵2𝐺 . 𝜂𝑑𝑠𝑔 )𝑉

𝑣 − 𝑃𝑡 ,𝑠
−  (10) 

 𝑃𝑡 ,𝑣,𝑠
𝐵2𝑅 . 𝜂𝑑𝑠𝑔 = 𝑅𝑡 ,𝑣,𝑠 (11) 

 0 ≤ 𝑃𝑡 ,𝑣,𝑠
𝐺2𝐵 + 𝑃𝑡 ,𝑣,𝑠

𝐵2𝐺 ≤ 𝑃𝑚𝑎𝑥 ×  1 − 𝑋𝑡 ,𝑣,𝑠  (12) 

 0 ≤ 𝑃𝑡 ,𝑣,𝑠
𝐵2𝑅 ≤ 𝑃𝑚𝑎𝑥 ×  𝑋𝑡 ,𝑣,𝑠  (13) 

 0 ≤ 𝑃𝑡 ,𝑣,𝑠
𝐺2𝐵 , 𝑃𝑡 ,𝑣,𝑠

𝐵2𝐺  (14) 

 Where:  

 𝑃𝑡,𝑣,𝑠
𝐺2𝐵, 𝑃𝑡,𝑣,𝑠

𝐵2𝐺  and 𝑃𝑡,𝑣,𝑠
𝐵2𝑅  represent the power trade 

between grid to batteries, batteries to grid and 

batteries to road (used to travel).  

 𝜂𝑑𝑠𝑔 and 𝜂𝑐ℎ𝑔 represent discharging and charging 

efficiencies.  

 𝑅𝑡,𝑣,𝑠 and  𝑋𝑡,𝑣,𝑠 represent the energy consumption 

in road (while traveling) and the binary index that 

show while a vehicle is in a trip state respectively. 

D. Constraints: State of Charge of Batteries 

Constraints related to battery approach are widely 

described in previews researches so analytical modelling will 

be used [2], [3]. 

 𝑠𝑜𝑐𝑡 ,𝑣,𝑠 = 𝑠𝑜𝑐𝑡−1,𝑣,𝑠   (15) 

 +∆𝑡 ×  𝑃𝑡 ,𝑣,𝑠
𝐺2𝐵 . 𝑛𝑐ℎ𝑔 − 𝑃𝑡 ,𝑣,𝑠

𝐵2𝐺 − 𝑃𝑡 ,𝑣,𝑠
𝐵2𝑅   (16) 

 0 ≤ 𝑆𝑜𝐶 ≤ 𝑠𝑜𝑐𝑡 ,𝑣,𝑠 ≤ 𝑆𝑜𝐶 ≤ 𝐵𝐶𝐸𝑆  (17) 

 𝑠𝑜𝑐𝑡=0 = 𝑆𝑜𝐶𝑠,𝑣
𝑖𝑛𝑖𝑡   (18) 

 𝑠𝑜𝑐𝑡 ,𝑣,𝑠
𝑑𝑒𝑔

≥ 𝑠𝑜𝑐𝑡−1,𝑣,𝑠 − 𝑠𝑜𝑐𝑡 ,𝑣,𝑠         (19) 

 𝑠𝑜𝑐𝑡,𝑣,𝑠

𝑑𝑒𝑔
≥ 0 (20) 

Where:  

 𝑠𝑜𝑐𝑡,𝑣,𝑠  represent the state of charge of 𝑣  EV 

battery in 𝑡 time and 𝑠 scenario of shortage.  

 𝑆𝑜𝐶 and 𝑆𝑜𝐶 represent the state of charge limits.  

 𝑆𝑜𝐶𝑠,𝑣
𝑖𝑛𝑖𝑡 is a random initial state of charge of day. 

 

E. Constraints: PQP market election 

Constraints related to both the DA and RT markets are 

meticulously selected, and transform this model into a Multi 

Index Linear Programing effectively. 

As shown in [10], the DA market could be represented by a 

price quantity probability analysis with a b price and quantity 

probability set; therefore, the present investigation will use 

these data. 

 𝐷𝐴𝐸𝑀 = ∆𝑡   (𝜆𝑏 − 𝜆𝑏−1) ×  𝑃𝑡
𝐸𝑀 × 𝑃𝑄𝑃𝑡 ,𝑏 

𝐵
𝑏

𝑇
𝑡  (21) 

 𝑅𝑇𝐸𝑀↑ = ∆𝑡    
𝜋𝑡 ,𝑠 ×  𝜆𝑏 − 𝜆𝑏−1 ×

 𝑃𝑡 ,𝑠
− × 𝑃𝑄𝑃𝑡 ,𝑠,𝑏

↑  
𝐵
𝑏

𝑆
𝑠

𝑇
𝑡  (22) 

 𝑅𝑇𝐸𝑀↓ = ∆𝑡    
𝜋𝑡 ,𝑠 ×  𝜆𝑏 − 𝜆𝑏−1 ×

 𝑃𝑡 ,𝑠
− × 𝑃𝑄𝑃𝑡 ,𝑠,𝑏

↓  
𝐵
𝑏

𝑆
𝑠

𝑇
𝑡  (23) 

 𝑃𝑏
𝑃𝑄𝑃 − 𝑀𝑏𝑖𝑔 × 𝑃𝑄𝑃𝑡 ,𝑏 ≤ 𝑃𝑡

𝑆𝑌𝑆 + 𝑃𝑡
𝐸𝑀  (24) 

 𝑃𝑡
𝑆𝑌𝑆 + 𝑃𝑡

𝐸𝑀 ≤ 𝑃𝑏
𝑃𝑄𝑃 + 𝑀𝑏𝑖𝑔 ×  1 − 𝑃𝑄𝑃𝑡 ,𝑏  (25)

 𝑃𝑏
𝑃𝑄𝑃 − 𝑀𝑏𝑖𝑔 × 𝑃𝑄𝑃𝑡 ,𝑠,𝑏

↑ ≤ 𝑃𝑡
𝑆𝑌𝑆 + 𝑃𝑡

𝐸𝑀 + 𝑃𝑡 ,𝑠
−  (26) 

 𝑃𝑡
𝑆𝑌𝑆 + 𝑃𝑡

𝐸𝑀 + 𝑃𝑡 ,𝑠
− ≤ 𝑃𝑏

𝑃𝑄𝑃 + 𝑀𝑏𝑖𝑔 × (1 − 𝑃𝑄𝑃𝑡 ,𝑠,𝑏
↑ ) (27) 

 𝑃𝑏
𝑃𝑄𝑃 − 𝑀𝑏𝑖𝑔 × 𝑃𝑄𝑃𝑡 ,𝑠,𝑏

↓ ≤ 𝑃𝑡
𝑆𝑌𝑆 + 𝑃𝑡

𝐸𝑀 − 𝑃𝑡 ,𝑠
+  (28) 

 𝑃𝑡
𝑆𝑌𝑆 + 𝑃𝑡

𝐸𝑀 − 𝑃𝑡 ,𝑠
+ ≤ 𝑃𝑏

𝑃𝑄𝑃 + 𝑀𝑏𝑖𝑔 × (1 − 𝑃𝑄𝑃𝑡 ,𝑠,𝑏
↓ ) (29) 

Where: 

𝜆𝑏 and 𝑃𝑏

𝑃𝑄𝑃
 are calculated from DA market historic data 

in base to cumulative distribution function (CDF), generating 

that way a Price-Quantity-Probability (PQP) function.  

𝑃𝑄𝑃
𝑡,𝑏

, 𝑃𝑄𝑃
𝑡,𝑠,𝑏
↑  𝑎𝑛𝑑 𝑃𝑄𝑃

𝑡,𝑠,𝑏
↓  are binary variables that 

allowed a step of PQP in equations from (24) to (29), for 

usage in equations (3) to (5) resulting in equations (21) to 

(23), finally 𝑀𝑏𝑖𝑔 is a scalar value that allows the algorithm 

of step selection. 
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III. STUDY CASE 

Based on [10], [11] and applied to a generic case, in order 

to achieve applicability, a 2x2 effect of travel pattern 

scenarios on the daily cost of EVAs was described as an input 

set of 500 EVs. However, regarding TESLA Model X EVs, 

the battery capacity was adjusted to BCES=100kWh, also 

using a fast charge lvl3 DC-DC, this tesla vehicle has a power 

value of 100kW, the value of m is adjusted to 

[0.0006,0.0017], but degradation costs in contrast to previous 

investigations have decreased its value to a range of 100-140 

$/MWh. 

A. Constraints: PQP market election 

𝜋𝑡,𝑠 probabilities of shortage-overage in RT market, which 

is applied in Lima, Peru. Santa Rosa electric substation node 

values are shown in Fig. 1 corresponding to April 2019 

historic data, and the 𝑃𝑡
𝑆𝑌𝑆data correspond to 04 April 2019 

that for EVAs would be calculated based in historical data. 

Likewise, PQP energy market is represented in “Fig. 2”. 

 

 
Fig. 1 Lima, Peru (Google Maps) – Traffic 

 

 
Fig. 2 PQP of Energy Market 

IV. RESULTS AND DISCUSSION 

A. Optimization model 

The travel patterns used in the present optimization model 

were categorized as normal distributions for travel time and 

average vehicle speed, the values of which are shown in 

Table I. 

Table I: Scenarios characterization 

Scenarios Description μ σ 

Time Traveling 1 scenario [h] 0.5 0.75 

Time Traveling 2 scenario [h] 0.75 0.75 

EV Speed 1 scenario [km/h] 30 15 

EV Speed 2 scenario [km/h] 40 10 

B. Objective Function: Costs 

Compared to [10], [11], and as it was expected due to 

technology development, specifically in the CES battery 

degradation costs that were reduced to a range of 100-140 

$/MWh, the energy traded in the energy markets could 

operate in the V2G model since the costs show a negative 

value that results in a cost per unit ("p.u.") greater than 1, as it 

is shown in "Fig. 3". 

 

 
Fig. 3 CDF analysis of scenarios 

 

Table II: Daily costs for travel patterns 

Scenarios Description 
Total Cost (positive for buying and 

negative for selling) 

(TT. Sc 1;Speed Sc 1) -946.67 

(TT. Sc 1;Speed Sc 2) -891.1 

(TT. Sc 2;Speed Sc 1) -886.66 

(TT. Sc 2;Speed Sc 1) -848.81 

 

C. Constraints: Power Balances 

As expected, the negative values of energy traded 

represent the sale of energy by EVAs to the national 

interconnected power system, as shown in Fig. 4(a). In 

addition, daily prices in the energy market have changed their 

values as presented in Fig. 4(b), the probability that the 

shortage and excess of energy will generate additional energy 

that is sold in the DA market can also be seen in Fig. 4(b). 

 

 
Fig. 4(a) Results for Analysis in first scenario of time 

traveling and first scenario of EVs speed – Energy traded 

in DA market 
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Fig. 4(b) Results for Analysis in first scenario of time 

traveling and first scenario of EVs speed – Daily price in 

DDA market 

D. Constraints: Power Balances 

For Power balance showed in results, the maximum, 

minimum and total capacity of the ESS is calculated and 

presented in Fig. 4(c), as well as the State of charge, which is 

a calculation based in State of charge of each EV controlled 

by EVAs. 

 

 
Fig. 4(c) Results for Analysis in first scenario of time 

traveling and first scenario of EVs speed – Description of 

State of charge 

 

1) Total capacity of energy storage system (100%): It is 

calculated according to each EV adding all BCES. 

2) Max State of Charge condition: If all electric vehicles are 

the same model, the percentage of the maximum state of 

charge of the battery will be multiplied by the total capacity 

of the EVA energy storage system. Otherwise, the maximum 

state of charge of the EES is calculated by adding all the 

maximum states of charge of each EV in EVA. 

3) Min State of Charge condition: If all EVs are the same 

model, the same percentage of minimum battery charge will 

be multiplied by the total capacity of the EVA energy storage 

system. If not, the minimum state of charge of the EES will 

be calculated by adding all the minimum states of charge of 

each EV in the EVA. 

4) State of Charge: The state of charge of the global EES of 

EVA is calculated by summing all the states of charge of each 

VE in EVA. 

E. Constraints: PQP market election 

As a result of the PQP analysis specifically in the DA 

energy market (rather than in the RT market), a better 

marginal cost performance could be generated in the energy 

markets, as shown in Fig. 4(d), when energy market prices 

are lower than those of the absence of EVA Group 

participation. 

 

 
Fig. 4(d) Results for Analysis in first scenario of time 

traveling and first scenario of EVs speed – Variation in 

Energy prices triggered by EVAs insertion 

V. CONCLUSIONS 

Every company intending to invest in the core EVA 

business would be located in a specific location with a 

different travel pattern for the vehicle fleet, this is the main 

reason why this research analysis has been initiated, which 

concludes that each travel pattern scenario has its own impact 

on the cumulative cost distribution function. But according to 

the analysis developed, the reduction of battery degradation 

costs leads to a V2G share for the EVAs in the energy 

markets (DA and RT markets), which generates a substantial 

benefit for the EVA owners in the market for combustion 

engine vehicles. 

EVAs' presence leads to a variation of the energy price in 

the market, which in each calculated scenario represents a 

better Distributed Network Operability, and a potential 

reduction in marginal cost performance. 

Eventually this better evaluated V2G would assist in the 

independent investment of EVAs to obtain a better financial 

analysis for each EVA, regardless of location a study of travel 

patterns of the vehicle fleet could complement this research 

to obtain as detailed an analysis as possible. 

Future research should compare an analysis of investment 

cost and other operating costs with the revenues from the sale 

of energy in the energy markets, in order to provide a better 

profit analysis and financial analysis for EVA owners; in 

addition, the corresponding centralized relationship of 

SCDMS with the interaction of EVAs should be analyzed. 
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